3 research outputs found

    Identification of protein coding genes in genomes with statistical functions based on the circular code

    Get PDF
    A new statistical approach using functions based on the circular code classifies correctly more than 93 % of bases in protein (coding) genes and non-coding genes of human sequences. Based on this statistical study, a research software called "Analysis of Coding Genes" (ACG) has been developed for identifying protein genes in the genomes and for determining their frame. Furthermore, the software ACG also allows an evaluation of the length of protein genes, their position in the genome, their relative position between themselves, and the prediction of internal frames in protein genes

    Analysis of Gene Evolution: the software AGE

    Get PDF
    The software AGE (Analysis of Gene Evolution) has been developed both to study a genetic reality, i. e. the identification of statistical properties in genes (e.g. periodicities), and to simulate this observed genetic reality, by models of molecular evolution. AGE has two types of models: (i) models of sequence creation from oligonucleotides: concatenation model in series of an oligonucleotide, independent (or Markov) mixing model of oligonucleotides according to given probabilities (or a Markov matrix); (ii) models of sequence evolution from created sequences: insertion/deletion process of (mono, di, tri)nucleot-ides, base mutation process. The study of a reality and the development of simulation models are based on several new algorithms: approximated simulation and exact calculus to compute various autocorrelation functions, Fourier transformation of autocorrelation curves, recognition of a curve form, etc. AGE is implemented on IBM or compatible microcomputers and can be used by biologists without any computer knowledge to identify statistical properties in their newly determined DNA sequence and to explain them by models of molecular evolutio

    Periodicities in introns

    No full text
    corecore